John Romant's Technology Blog

If it's technology, I want to know about it.

Commercializing Stretchable Silicon Electronics

A Stretchy Sensing Tool for Surgery

Monday, March 7, 2011
By Katherine Bourzac

A new surgical tool covered in stretchable sensors could reduce the time required to map electrical problems in the heart from over an hour to just a few minutes. The tool could be one of the first commercial applications for an innovative method for making dense arrays of stretchable, biocompatible electronics using high-performance materials including silicon. The tool, which senses temperature and electrical activity, could also lead to better monitoring during other types of surgery, potentially reducing the rate of complications.

Putting such devices on a stretchy surface is not possible using conventional electronics manufacturing. The stretchable silicon electronics used were developed by John Rogers, professor of materials science and engineering at the University of Illinois at Urbana-Champagne and a cofounder of MC10, a startup that is commercializing the technology. Researchers at MC10 are leading the development of the catheters and are also developing the electronics for other applications.

The surgical tool has performed well in animal tests designed to mimic a disorder called atrial fibrillation. This results from electrical problems in the heart tissue around the pulmonary vein, which carries blood back to the heart from the lungs. The condition, in which the upper chambers of the heart quiver instead of beating, is seen in over 2 million Americans, and in 15 percent of all people who have strokes. Atrial fibrillation is difficult to control with drugs, and the drugs that are used, including blood thinners, can have serious side effects. But the problem can be corrected with surgery. First, surgeons map the source of the electrical problem with a probe, and then they knock out the electrical trouble spots by heating and damaging those tissues.

The new multifunctional surgical tools could help speed this surgery, lowering the risk that something will go wrong.

Mapping electrical activity in heart tissue is conventionally done using a tool called a balloon catheter—a soft, inflatable probe fitted with one or two electrodes. The catheter is moved back and forth over the damaged tissue, taking thousands of electrical readings one at a time, and these become the basis for a map of electrical activity. But the process is time-consuming—in the case of some fibrillations it takes over an hour.

continue reading…

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: